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Optimization
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Let f : Rn → R, and let S ⊆ Rn, the problem is:

m i n
x∈S

f (x)

Or finding x∗ ∈ S such that

f (x∗) ≤ f (x) ∀x ∈ S

D e fi n i t i o n

If x ∈ S, x is said to be feasible for the optimization problem m i n x∈S f (x).

Note that to minimize f (x) is equivalent to maximize −f (x).
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D e fi n i t i o n

x0 is a local minimum of f in S if, there is an open ball B(x0, r) such that for any
x ∈ B(x0, r) ∩ S it holds that f (x0) ≤ f (x).

x∗ is a global minimum of f in S if for any x ∈ S it holds that f (x∗) ≤ f (x).

D e fi n i t i o n

Let the a r g m i n x∈S f (x) represent the set of all global solutions to the problem of
minimizing f with x ∈ S.

Note: For a maximization problem you have equivalently local maximum, global maximum, and
a r g m a x x∈S f (x).
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C o n j e c t u r e

Let f : Rn → R be a continuous function. Let S ∈ Rn be compact. Then the problem

m a x
x∈S

f (x)

has at least one solution, or equivalently a r g m i n x∈S f (x) 6= ∅.

C o n j e c t u r e

If S1 ⊆ S2, then min(f ,S1) ≥ min(f ,S2).
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Prove the first one, 10 min.

P r o o f .

f is continuous in S, and S is compact, so f (S) is compact.
f (S) compact means it is bounded, and furthermore closed, so the supremum
(lowest upper bound) is in the set.
∃s ∈ S such that f (s) = s u p f (S).

Maybe it can be shown with contradiction, choosing an x , then see if it is the
maximizer, done, if it is not, it is because you know of another that gives you a higher
value in f (x), so you move to that one. Then you can build a sequence, which you
now it has a subsequence that converges in S (S is compact), and therefore the limit
must be the maximizer, and therefore f (xn) converges to the maximum of the function
as well.
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Now the second one 5 min.

P r o o f .

Trivial. By contradiction. Let s1 ∈ S ≤ s2 ∈ S. As si ∈ S1 ⇒ s1 ∈ S2, because
S1 ⊆ S2, then s2 cannot be a minimizer.
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These are the necessary conditions for optimality for the unconstrained problem
(S = Rn), when f is at least twice differentiable:

C o n j e c t u r e

x0 is a local optimum of f : Rn → R if:
1. First Order Condition: ∇f (x0) = 0.
2. Second Order Conditions:

2.1 H(f , x0) ≥ 0 (Hessian positive semi definite) then x0 is a local minimum.
2.2 H(f , x0) ≤ 0 (Hessian negative semi definite) then x0 is a local maximum.
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E x a m p l e

Let f (x , y) = x2 + y2,
1. FOC: ∂f

∂x (x
∗) = 0 and ∂f

∂y (x
∗) = 0

1.1 fx = 2x , so fx = 0 ⇒ x∗ = 0
1.2 fy = 2y , so fy = 0 ⇒ y∗ = 0

2. SOC:
2.1 Hessian:

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2 0
0 2

)
2.2 d e t (H− λI) = (2− λ)2, so d e t (H− λI) = 0 ⇒ λ = 2
2.3 All e.v . are strictly positive, so H is positive definite.
2.4 Finally (0, 0) is a minimum.
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E x a m p l e
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E x a m p l e

Let f (x , y) = x2 − y2,
1. FOC: ∂f

∂x (x
∗) = 0 and ∂f

∂y (x
∗) = 0

1.1 fx = 2x , so fx = 0 ⇒ x∗ = 0
1.2 fy = −2y , so fy = 0 ⇒ y∗ = 0

2. SOC:
2.1 Hessian:

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2 0
0 −2

)
2.2 d e t (H− λI) = −(4− λ2), so d e t (H− λI) = 0 ⇒ λ = ±2
2.3 The e.v .s are not strictly positive or negative, so we cannot say anything about the

positiveness of H.
2.4 Finally we cannot say that (0, 0) is a minimum or a maximum.
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E x a m p l e
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E q u a l i t y C o n s t r a i n t s

Consider now the constrained problem, and assume that S ⊆ Rn can be described as a
set of equations that x ∈ Rn must satisfy, say hi(x) = 0.

S = {x ∈ Rn|hi(x) = 0, i = 1, ...,m}

The problem is now

m i n
x∈Rn

f (x)

s.t. hi(x) = 0, i = 1, ...,m

From now on, to simplify notation, we will use m i n x instead of m i n x∈Rn .
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D e fi n i t i o n ( M a n g a s a r i a n - F r o m o w i t z c o n s t r a i n t q u a l i fi c a t i o n )

The feasible point x∗ ∈ Rn is said to be regular if the set of gradients ∇hi(x∗) for
i = 1, ...,m is l.i.

If this is not satisfied, the solution you find might not be an optimum.
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D e fi n i t i o n

Let f : Rn → R, continuous and differentiable.
Consider the following optimization problem:

m i n
x

f (x)

s.t. hi(x) = 0, i = 1, ..., n

Define the function L : Rn ×Rm → R such that:

L(x1, . . . , xn, λ1, . . . , λm) = f (x) +
m∑

i=1

λihi(x)

L is called the Lagrangian, and λi for i = 1, ...,m are called the Lagrange
multipliers.
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T h e o r e m

Let x∗ to be a local minimum of f , such that hi(x∗) = 0 for i = 1, ...,m. Also let x∗

be regular. Then, there is a vector λ = (λ1, . . . , λm)
t ∈ Rm such that:

∂f (x∗)

∂xi
+

m∑
j=1

λj
∂hj(x∗)

∂xi
= 0, i = 1, . . . , n

∂f (x∗)

∂λj
= 0, j = 1, ...,m
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T h e o r e m ( S e c o n d O r d e r C o n d i t i o n s )

Let x∗ be a local minimum for f , satisfying hj(x∗) = 0 for every j = 1, ...,m. Assume
further that x∗ is regular. Consider λ ∈ Rm the vector of Lagrange multipliers of the
problem, then the matrix

H = H(f , x∗) +

m∑
j=1

λjH(hj , x∗)

is positive semi definite in the set M := {y ∈ Rn|∇hj(x∗) · y = 0,∀j = 1, ...,m}
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E x a m p l e

Let f (x , y) = x2y . Maximize f (x , y) such that x2 + y2 = 1.
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E x a m p l e

−4
−2

2
4

−4
−2

2
4−100

100

x y

f (x , y)

−4 −2 2 4

−4

−2

2

4

x

y

Paulo Fagandini



E x a m p l e

x

y

Paulo Fagandini



E x a m p l e

x

y

Paulo Fagandini



E x a m p l e

x

y

Paulo Fagandini



E x a m p l e

x

y

Paulo Fagandini



E x a m p l e

The Lagrangian is:

L = x2y + λ(x2 + y2 − 1)
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I n e q u a l i t y C o n s t r a i n t s

Assume now that S ⊆ Rn can be described as a set of equations and inequalities that
x ∈ Rn must satisfy, say hi(x) = 0 and gj(x) ≤ 0.

S = {x ∈ Rn|hi(x) = 0, i = 1, ...,m} ∩ {x ∈ Rn|gj(x) ≤ 0, j = 1, ..., p}

The problem is now

m i n
x

f (x)

s.t. hi(x) = 0, i = 1, ...,m
gj(x) ≤ 0, j = 1, ..., p
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D e fi n i t i o n

Let x∗ ∈ Rn be such that hi(x∗) = 0, i = 1, ...,m and gj(x∗) ≤ 0, j = 1, ..., p. x∗ is
called regular for the constraints if the set of gradients

{∇hi(x∗),∇gj(x∗), i = 1, ...,m, j =∈ JA}

is l .i ., where JA ⊆ {1, ..., p} represents the active constraints in x∗.
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D e fi n i t i o n

Let x∗ be a solution to the problem in the previous slide. The inequality constraint
gk(x∗) is called active, if gk(x∗) = 0. Otherwise it is considered slack.

If you knew ex-ante which constraints are active, you can use the Lagrange method to
find the solution.
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T h e o r e m ( K a r u s h - K u h n - T u c k e r )

Let x∗ be a local minimum for the problem:

m i n
x

f (x)

s.t. hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , p

Such that x∗ is regular for the constraints, then there are multipliers λi , i = 1, ...,m
and µj , j = 1, ..., p such that:

1. µj ≥ 0 for j = 1, ..., p.
2. ∇f (x∗) +

∑m
i=1 λi∇hi(x∗) +

∑p
j=1 µj∇gj(x∗) = 0.

3.
∑p

j=1 µjgj(x∗) = 0

Paulo Fagandini



T h e o r e m ( S e c o n d O r d e r C o n d i t i o n s )

Let x∗ be a local minimum of f that satisfies hi(x∗) = 0, i = 1, . . . ,m,
gj(x∗) ≤ 0, j = 1, . . . , p. Assume further than x∗ is regular for the constraints. Then
the matrix

H = H(f , x∗) +

m∑
i=1

λiH(hi , x∗) +

p∑
j=1

µjH(gj , x∗)

Is positive semi definite in the set that is orthogonal to the active constraints:
M := {y ∈ Rn|∇hj(x∗) · y = 0,∀j = 1, ...,m} ∩ {y ∈ Rn|∇gk(x∗) · y = 0, k ∈ JA}
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T h e o r e m ( E n v e l o p e ’ s T h e o r e m )

Consider the following optimization problem,

m i n
x

f (x , α)

s.t. hj(x , α) = 0, j = 1, ...,m

Where α = (α1, ..., αl) ∈ Rl are parameters of the problem. Consider further that all
the functions (f , hs) are continuously differentiable. Let x(α) a solution and
min(f )(α) = f (x(α), α) the minimum value taken by f . Then, ∀k = 1, ..., l holds that:

d m i n (f )(α)
dαk

=
∂f (x(α), α)

∂αk
+

m∑
j=1

λj
∂hj(x(α), α)

∂αk

Where λj is the multiplier of the optimality conditions.
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T h e o r e m ( B e r g e ’ s M a x i m u m )

Consider the following optimization problem

m a x
x

f (x , α)

s.t. gj(x , α) ≤ 0, j = 1, ..., p

Assume that for α∗, the solution is x∗ = x(α∗). Then, if f and the gs are continuous
in (x∗, α∗), and the set defined by the inequality constraints is compact, then the
function m a x (f )(α) = f (x∗(α), α) is continuous in α∗. Furthermore, if the solution
x∗(α) is unique, then, x∗(α) is also continuous.
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